

 Single-Source Indexing
Jan C. Wright

Wright Information Indexing Services,
Inc.

P.O. Box 658
Sandia Park, NM 87047

505-281-2600

jancw@wrightinformation.com

ABSTRACT
As more and more content is being produced and distributed in
multiple formats, the issue of providing indexes for various
formats becomes important. Indexes can be considered as residing
within interfaces, rather than just more pages accompanying a
printed piece, or a tab stuck in a online help file. Designing
indexes that work equally well in any of the various interfaces a
document may be displayed in, whether print, help, PDF, or on
the Web, presents a real challenge.

Understanding the structure and relationships available in each
destination format allows the indexer to design the index to work
well in each instance. Ignoring an output format or assuming that
the index is a simple construction leads to poorly designed online
indexes, in which one format’s requirements have been sacrificed
for the output needs of another. In addition, print indexes do not
translate well to online without consideration of screen design and
user behavior.

In this paper we discuss the interface indexing design issues for
print, online HTML Help, PDF, XML, and plain HTML.

Categories and Subject Descriptors

General Terms
Documentation

Keywords
Indexing, Single-sourcing

1. INTRODUCTION
As more and more people try to get one index to work in all the

content they produce from a base set of files, whether print or
online, it becomes evident that indexes are not just another piece
of content to be converted to another format. Since they function
as search tools, they should change their functionality to best
utilize the interface they are residing in.

Taking base files for a documentation set and creating both print
and online output often poses difficulties in terms of the main
content of a piece. When the process is ready to convert the
indexing for the files, a whole new set of difficulties comes to
light. The indexing often doesn’t work correctly online, or all of
the information that was represented by page ranges falls away
with only a single link to represent it online. Links may be dead,
missing, presented oddly in the interface, or too long to be visible
in the screen setting.

Online indexing interfaces can range from displaying embedded
key terms from a thesaurus in neatly-defined fields in databases,
to a CD-ROM index with pictures of dinosaurs beside each letter
section, to a Web-based HTML index jumping to other sites, to
the Help file index that comes with a software product. The
display of each online index varies widely, and the techniques and
tools used to index the content need to be analyzed to meet that
display’s particular needs.

Indexes, by their very nature, are not straightforward pieces of
content. They have a database nature to their construction that is
often not considered until they undergo a conversion process.
Indexes consist of records which are compiled into a readable,
searchable format. That underlying database structure must be
constructed and then converted with an eye towards creating a
usable tool in multiple output formats. Writing indexes means
writing a readable, comprehensible piece that happens to reside in
a set of records that gain meaning when they are compiled
together in an interface. This is a unique challenge when single-
sourcing files.

Once we realize that we are working with a search tool in multiple
interfaces, one that is based on records in a database, we can start
designing the indexing with an eye towards requirements,
tradeoffs, and usability. To understand what is required, it’s best
to start by looking at the elements that make up indexes, since
some specific fields in the database cause problems when an index
is single-sourced. Then let’s look at samples of each kind of
interface that single-sourced documents are compiled into, so that
we can understand how to identify a list of requirements for
single-sourcing indexes.

PERMISSION TO MAKE DIGITAL OR HARD COPIES OF ALL
OR PART OF THIS WORK FOR PERSONAL OR CLASSROOM
USE IS GRANTED WITHOUT FEE PROVIDED THAT COPIES
ARE NOT MADE OR DISTRIBUTED FOR PROFIT OR
COMMERCIAL ADVANTAGE AND THAT COPIES BEAR THIS
NOTICE AND THE FULL CITATION ON THE FIRST PAGE. TO
COPY OTHERWISE, OR REPUBLISH, TO POST ON SERVERS
OR TO REDISTRIBUTE TO LISTS, REQUIRES PRIOR SPECIFIC
PERMISSION AND/OR A FEE.

SIGDOC’01, OCTOBER 21-24, 2001, SANTA FE, NEW MEXICO,
USA.

COPYRIGHT 2001 ACM 1-58113-295-6/01/00010…$5.00.

mailto:jancw@wrightinformation"

1.1 Identifying Index Elements
A typical segment of print indexing can reveal a lot of index
elements for us:

Figure 1: Index Elements

Figure 1 shows a typical segment of a compiled print index.
There’s no visual evidence of the database in which these records
reside, just a finished search tool. This print interface, because
print really IS an interface for presenting information, has come to
represent the standard idea of what an index consists of.

 There are main entries, such as “data source signaling.”
 There are entries that require more elaboration, or need to be

broken down, such as the subheads following “device classes.”
 Subheads can be second levels, such as under “device

classes,” or go to third levels in a deep index, such as the entries
under “devices.”

 Usually unnoticed in the main head-subhead groupings is the
entry for “device classes” itself, the one with the locator on page
89. These standalone entries have come to be called
“stubheads,” since they create a stubbed heading in indexes.
These are headings that will be created by the compiler if
needed, or can be created by assigning an entry with no
subheads such as the one on page 89, and in print are often used
to indicate the main discussion. In general, they function as a
placeholder in the compiled/printed version of the index in
order to display the main heading. Some tools require them to
have a locator, and some do not. Whether or not a stubhead
record with no subheads has been entered, the compiler creates
the main head for the subheads below. (See section 2.4.)

 There are the portions of the entries that represent where the
material is to be found, the locators. In this example, they are
page numbers, but they can also be topic links.

 Some topics are found in multiple places in the content, and
are represented by multiple locators, such as those following
“descriptor index.”

 Some topics are long, and the index should let the user know
that this is a long discussion, covering several pages. In these

cases, a page range is used, such as the one following “data
source signaling.”

 Locators may represent different numbering systems present
in the piece, such as the one for “data packets: in transfers.” The
compiler must be able to handle the ordering of locators, so that
they are presented logically to the user.

 Cross references, in several varieties, are used. “See”
references direct a reader from an unused term to a preferred
term, in the hopes that the reader will find the time to go look in
another place within the index, the place where all the entries
are hopefully spelled out. These are only used when it is
worthwhile to make the user work harder. Duplication of entries
under both heads is usually easier on the user, but space
constraints can lead to using “See” references.

 “See also” references give clues to related material that the
reader might also be interested in.

 Generic “See” references are those which refer the user to a
type of entries to be consulted. No one specific entry is singled
out. These are used when you have a lot of entries of a
particular type, such as commands or dialog boxes.

 Cross references that are attached to a subhead are a fourth
kind of reference.

 Sorting codes, coding attached to the record to force it to sort
in a different way than the machine’s ASCII default, are needed
to have entries such as “The Unicode Standard…” come up in
the U’s instead of in the T’s section. These codes are usually
processed with the record. You can also see forced sort order
coding results within the subheads, where the word “in” is being
ignored under “data packets”

This index construction was created as a set of database records,
and in order to look at single sourcing indexes, it’s important to
think about the underlying database structure. Figure 2 shows the
records that created this chunk, so that the important pieces can be
identified in their original state before compilation.

Figure 2: Index Records

As you can see, in the records themselves, each main head is
repeated as the first element, the first “field,” in the complex
entries with subheads. The stubhead entry is a separate entry if it

has been assigned a locator. If not, the compiler creates it. Cross
references also require their own records. Each locator that is
picked up requires its own record as well. (Note: in some indexing
tools such as Cindex or Macrex, several locators can be combined
in a single record. In most embedded tools, this doesn’t work,
since the entries are placed on separate pages and must be
represented as duplicated records.)

Also note that the formatting of italics on the cross references is
not present in this particular record sample. Formatting is
something that the compiler (Cindex in this case) applies to these
records in the particular tool these records were generated in. The
most valuable indexing tools need to provide for different
formatting styles without having to pre-format the content of
individual records.

Already, you can see that getting the basic records into a compiled
format just for print requires some processing – compiling the
subheads under “device classes,” and formatting the sections
correctly, knowing that the stubhead for “device classes” needs to
come first, applying italics on all the cross references, and also
placing them where they make the most sense.

The best indexing programs for print indexing (and for single-
sourcing) leave all the formatting to the compiler, so that it is easy
to change punctuation between entries in the compile, change
from an indented to run-in format if needed, and format entries in
any typestyle needed. Understanding what happens with these
records in their original state, and then following what happens to
them during the compile to online, is the key to successful single-
sourcing.

1.2 Embedded Entries in Files
When technical writers use tools such as Microsoft Word or
Adobe Frame to create content, and then use the built-in indexing
modules to build indexes for that content, the concept of the
database is not as easy to see or understand. This is mostly due to
the lack of an overall editing view in these programs – all you can
see while indexing is the paragraph you are in, or the end
compiled result (unless you use a tool like IXGen to build a
Frame table for your index editing).

Each XE entry in Word, or each index marker in Frame, needs to
be considered as an individual record, and each still needs to have
each field in the record understood if the file will be converted
correctly to another format. A common feature in embedded
indexing modules is the use of punctuation marks to separate
main heads from subheads. In Word and Frame, a colon is used.
In Frame, a semicolon separates one entry from the next, since
Frame allows multiple entries in a marker.

In Figure 3 the same records needed to create the compiled index
shown in Figure 1 are displayed as Word XE tags. In real life,
these entries would be scattered through the files in the
appropriate locations, so that the compiler could pick up the
correct page numbers when compiling this index.

Notice how Microsoft Word loads up each entry with more
coding then those recorded in the plain database in Figure 2.
When single-sourcing, this coding will have to be understood and
dealt with correctly to get each piece of the index to display
correctly both in print and in the alternate output. If the codes are
not handled correctly in the conversion to an online format, or the
indexing is not set up to work in both interfaces, problems result,
as shown in Figure 4:

Figure 3: Entries in Microsoft Word

Figure 4: Online Index Entries with Errors

Figure 4 illustrates some of the issues of designing an index for
one interface (print) and ignoring the second interface (online).

 Third level headings did not convert correctly for this
compiler since it doesn’t allow third levels (WinHelp).

 The “See Also” cross references need to sort in a consistent
position. Unless the compiler knows to put them at the top of
the list of subs or at the bottom, they will sort under “S,” in an
odd position that makes no sense to the user. And they must sort
consistently in every translated language as well.

 The cross references should help the user to get to the
preferred terms. Preferably the compiler should be programmed
to code these to jump to the “Seen” reference. Otherwise, where
do they lead if clicked?

 The compiler doesn’t know to combine multiple cross
references for online formats.

 Topics that cover multiple pages in print may be broken into
several online topics by the author to make better use of the
screen interface. The compiler making the index may not pick
this up, leaving the online index with only one entry for the first
topic, and none for the newly created ones. That leaves a user
hanging in the void unless good internal inter-topic navigation
exists.

 One large issue is the loss of access to the “device classes” topic that
was on page 89. It is now represented solely by the stubhead: if the user
fails to click on the stubhead to access it, will the user ever find it?
Stubheads raise a usability problem not addressed in print indexes –
where should they lead? Should they be active at all? Will users click on
them? Take a look at “data formats.” That entry had locators with
information. In this interface, will a user know that there is information
behind that stubhead?

 No special formatting is applied by this compiler. So all
meanings attached to italics or any other special formatting by
the user are lost. All indications of the special meaning of cross
referencing rely totally on the user to understand the words
“See” and “See also”.

 This compiler also ignores any sort codings, arranging the
entries strictly by ASCII order, which may not be the best for
comprehension. This is best shown by the sorting of the “The
Unicode Standard” under “T”.

Figure 5: HTML Help Conversion

Figure 5 shows the same set of entries converted into an HTML
Help index. Additional problems crop up in this different
compiler:

 Entries using internal punctuation break apart, as in the
“Unicode Standard” entry at the end.

 Special characters sort in a completely different order, and
are also replaced with the wrong character, as shown in the “end
encoding” example.

As you can see with these examples, the single-sourcing process
creates problems for index records, and requires the interfaces and
the compiler’s behavior to be understood in advance in order to
create good indexes in all output formats. Designing the perfect
set of entries for all possible output formats isn’t feasible – a lot of
special compiling code would have to be written and debugged,
and most writing projects do not have the time, staff, or budget to
spend creating that coding. Off-the-shelf writing software and
tools as well as standard output formats such as HTML Help or
PDF are what’s needed by most writing teams, and are the most
used tools for accomplishing single-sourcing.

A compromise is nearly always made in the indexes of single-
sourced projects. Choosing the best compromise in terms of
usability is the difficult task. It can be made easier by running
sample small indexes containing all required elements through the
process, and then making decisions about what features stay in,
and what will not work. Only after testing can the index be
designed and written to take advantage of all the interfaces it is
required to work for.

2. IDENTIFYING
INDEX INTERFACE ISSUES
Every single-sourcing project is using different tool sets, different
conversion methods, and different compilers. Tools are chosen to
meet a variety of output needs, and sadly sometimes the index
isn’t considered when the choices are made. But a long history of
successful projects has shown that usable indexes can be
developed within any single-sourcing tool set, as long as enough
time is granted to do testing, and the indexer is aware of the
interface issues. This means the tools for building the content and
the final interfaces for presenting the index must be identified
early on, and the usability issues for the indexing in the interfaces
must be explored as well. Indexing without a solid interface leads
to problems.

Some of the questions that need to have answers are:

 How many levels of index will appear? Many tools allow
only one level to appear, some allow two. The indexer will have
to come up with workarounds in a one-level index, such as
using a semicolon to visually divide entries into two levels:

 device classes
 device classes: descriptors
 device classes: hub class specific requests

 When the user clicks on an entry, do they get a list of topics
that have that term applied, or is there only a one-to-one
correspondence (an entry leading to only one topic) between
index entry and topic?

 Are there any controls over the sorting of the entries? Often,
the answer is "no" in compiled indexes or embedded indexes
converted from print files. The indexer needs to know in order
to rewrite problematic entries.

 How do cross-references appear, what types are available,
and if the user clicks on them, what happens? This will impact
how much double-posting is used in the index design.

 How will the user get to different sections of the index, by
clicking a button or typing a letter? How the user navigates in
the index is a concern: if the user types in plural words, and you

have indexed with singular entries, they may scroll past the
terms they need and never find them.

With all of this in mind, let’s embark on an examination of the
most common output formats and their index interfaces, to get an
overview of where the potential design problems lie.

2.1 Print indexes
Figure 1 showed the diversity of entries and features available in
print indexing. Because of its static nature, print indexing allows
the most flexibility and creativity in designing the index. A wide
range of formatting and punctuation options can be used in a print
environment. When single-sourcing, it is usually the print index
that is compromised and forced to adapt to the limitations of the
other output formats. It is also the easiest to force into other
structures.

In the next sections we will show how redesigning the index for
the more limited output formats affects the print index as well.

2.2 PDF indexes
Converting content with an index to PDF format is one of the
simplest conversions. The final output looks just like the printed
piece. There are, however, a few issues to be aware of in
designing the piece.

The PDF format usually starts pagination with page one,
regardless of whether the piece itself uses a different internal
numbering system, such as preface numbers i, ii, etc. If the index
is to be interactive and actively link the user back to the desired
page, it is best to make the PDF’s assigned numbers match the
page numbers within the piece. Generating an interactive index is
easily done within programs such as Adobe PageMaker or Frame,
and as long as the numbering systems match, the user can click
the index locators and go to the desired page.

If another tool is used to build the document, the index may not
be interactive. Sonar Activate is a tool that activates dead
(unlinked) PDF file indexes, and should be considered in these
cases, as interactivity increases the index’s usability.

The PDF interface is a bit more difficult to use than a book. It
looks the same, but it is harder to flip back and forth without
losing one’s place. Adding hyperlinks to index entries and tables
of contents reduces the user’s pain.

Also bear in mind that page-length screens of index entries are
harder to browse in PDF format. Scrolling up and down the
screen equivalent of a two-column 8 ½ by 11 inch page can be
annoying and cause the user to lose track of their task. Shorter
pieces with short indexes will work well, but a book with a 50-
page index may be too irritating to use.

Cross references in PDF files are not interactive unless the builder
chooses to use Acrobat Exchange to hand-link the references to
the desired target. This is a usability plus, but is rarely done.

2.3 WinHelp and HTML Help indexes
We have already briefly examined the problems that the WinHelp
compiler creates when single-sourcing Word file indexing into
online help. Some simple design rules can help make the online
index more usable, while keeping the print index relatively usable
as well. Once testing is done, developing a style sheet of rules
helps to keep compiling mistakes at a minimum. A look at Figure
6 shows the redesign.

Figure 6: Rewritten Entries for Single-Sourcing in
Word Processor or Page Layout Programs and

WinHelp/HTML Help

The first redesign is to make sure online topics are not lost under
stubheads, and that page-ranged topics, when broken apart online,
retain indexing entries. The indexer must be sure to recognize
where the topics will be broken up online, and must add entries to
each topic that was part of the page range. Stubhead entries are
double-posted with a unique subhead, so that they are findable
online.

A second redesign focuses on the cross references: in order to
keep the “See also” references in a consistent location, and make
the “See” references match and be more visible, parentheses are
added to the index. Parentheses force the sort order of these
special entries to the top of the list of subheads, and also work in
every language.

In WinHelp, generic cross references, used to refer the reader to a variety
of similar headings without listing them, can still be used, so they can
remain in the single-sourced indexing. But in HTML Help, since cross
references are active and the target must match the wording exactly, they
cannot be used. In either case, all “See also” references must be limited to
just one entry – no multiple cross references can be used

Since entries and subentries are sorted in strict ASCII order, there is no
way to force the sort to ignore prepositions in subentries. Therefore
prepositions must be dropped, and the subentries rewritten.

Internal punctuation causes problems, such as the “end encoding” entry.
All such punctuation must be avoided unless the entry is about a special
character. The leading underscore (_) underlining commonly found in

programming documents can be used if you don’t mind seeing a long list
of symbol entries at the top of the index. If you are using HTML Help,
there are ways to force the sorting, but forcing the sort carries other
format restrictions that may interfere with your project. (Check the
documentation about the two ways of compiling the project.) Internal
commas within entries can also make a compiler break entries apart in
unwanted ways, so these are eliminated.

Third level heads do not transfer to online formats, so they must be
abandoned for print as well. More detail in the second level heads, and
relying on the “Topics Found” box will help rework these entries.

Specialized locators do not translate into online formats, but with
embedded indexing, they should still compile correctly, the only loss
being the special information provided by seeing the locator.

All italics, bold, or small caps use should be avoided, as they do not
translate into online.

Plural entries should be used. If an index uses all singular entries,
such as “dog”, and the user types in a plural term, such as “dogs”,
they may go past the helpful entries, as seen below:

 Dog
 food
 vets
 water
 Dogmatic thinking

Typing “Dogs” in this case brings the closest entry to the top of
the display – “Dogmatic thinking.” The user may think there are
no entries for “Dogs,” as the screen usually rolls the found entry
to the top, hiding entries above. Unless the user thinks to scroll
up, they may assume there are no entries for their subject.

Tools such as RoboHELP can help the indexer avoid creating
dead or “passive” stubheads. In fact, a dead stubhead, one without
any topics assigned to it, will be removed during a RoboHELP
compile, causing odd-looking subhead compilation. If the index is
not built within RoboHELP, these problems will not be evident
until the compile. There are several ways to avoid the dead
stubhead problem:

1. Assign it to all topics contained in the subheads
below it.

2. Assign it to just one “overview” style topic, and
make sure that access to the topic also occurs in the
subheads.

There’s no guarantee that users will click on a stubhead, so access
must be duplicated elsewhere.

Keeping all of these rules in mind, here are the redesigned entries
for both print and online:

Figure 7: Compiled Index for Print

Figure 8: Compiled Index in WinHelp/HTML Help

As you can see in these examples, the print index makes all the
compromises – no page ranges, and extra details to make the online index
actually work well. The compromises are not very noticeable to the user.
The indexer may need to add more subheads to keep the strings of
locators to a manageable length of four or five. This redesign also helps
the online index, in that it shortens the lists of topics the user must wade
through on screen.

2.4 HTML indexes
Single-sourcing for print and plain HTML indexes is one of the hardest
design efforts for the indexer. If truly vanilla HTML is being used, in other
words, no special add-ons are developed for the HTML display, the indexer

is limited to what is known as a “one-to-one” index. Most other index
interfaces, both print and online, are examples of “one-to-many” indexes,
allowing multiple locators for each topic, and are easier to build.

Figure 9: One-To-Many Indexing

Figure 10: One-To-One Indexing

In a “one-to-one” index, each entry in the index can lead to one location
and one location only. Unlike the string of page numbers in many print
indexes, or the set of topics in a “Topics Found” dialog box in WinHelp,
you can only present the user with one topic. HTML indexes are
notorious for this – unless enhanced by programming, each entry in the
index can lead to only one anchor mark. Indexers have tried various
methods of presenting the index to overcome this limitation, but these
experiments have not been very successful. For example, the American
Society of Indexers web site index tried the following format:

 Tutorials 1, 2, 3, 4

Without subheads, or clues to the content of each number, each link had
to be clicked on separately, the page examined, and the user has to then
navigate back to the index to try another link. ASI has since abandoned
this design in favor of a simpler “one-to-one” system. The disadvantages
of the one-to-one system are that more subheads are required to create
unique pathways to each link. The indexes become much longer. Long
indexes online are hard for users: scrolling and flipping through pages is
frustrating.

An alternate creative design concept would be to bring up a separate page
listing third level heads or topic titles to help the user. The coding
required to produce this effect automatically would probably prohibit this
concept, but if the pages were to be updated and generated frequently,
and an automated way of generating the pages devised, it might be
worthwhile:

Figure 11: Adding Pop-up Pages for HTML Index Details

Below are index entries rewritten for HTML single-sourcing.

Figure 12: Print version of HTML Single-Sourcing File

Both the print index and the HTML index appear overly long,
overly detailed, but still usable. With raw HTML, it’s my personal
opinion that the stubheads should be passive or dead, to remove
complexity from the screen presentation. Active links are
underlined, and clear to the user.

Figure 13: Vanilla HTML Index

2.5 Conditional Text Single-Sourcing
Index design becomes increasingly complex if the single-sourcing
project also includes analysis of conditional text sections or
DHTML pop-up text. Some projects have the files split by macros

and recombined into various forms for print, for international
versions, or for light and professional versions. The most extreme
case of this in my experience was a project involving a basic user
manual that was created for both print and online, with some text
appearing solely in the print version, and other portions appearing
solely online. This would have been easy, except the base book
was then combined with three other specialized print and online
manuals, to generate four separate products. The single-sourced
base book and base online help appeared in all four products, and
then was augmented by additional print/online files, and online-
only files geared toward the specific product version. A total of
22,000 index entries were needed to cover the entire product
range. If a user bought multiple products, the indexes from all the
products merged in the online help screen. All 22,000 entries had
to work whether displayed for just one product, two, three, or all
four.

As an extra added bonus, portions of the files had to be done
early, frozen, and sent for translation. To an indexer, this can be a
nightmare, especially in terms of creating stubheads that do not
get lost when merged with other subheaded topics.

Conditional text scenarios like this one can be handled in two
ways: index everything and match the terminology across the
products as much as possible, but pay no attention to how things
look when conditional entries drop out of the merged index. Or
guarantee that the indexes will work and be usable across the
board, regardless of which index entries are combined and
displayed to the user.

The second approach is more costly and takes longer, but in the
end serves the user better. I was lucky that the company chose the
second method for several of its releases, and the documentation
team experimented with a variety of methods to make the
indexing, the single-sourcing, and the translation efforts to
generate twenty-two language versions go as smoothly as
possible.

In various releases, the following tool sets were used:

 Base files:Word files → Final files: PageMaker and
WinHelp (RoboHELP)

 Base files:Word files → Final files: PageMaker and
HTML Help (customized in-house tools)

 Base files:Word files → Final files: FrameMaker and
HTML Help with DHTML
(customized in-house tools)

 Base files:Word files → Final files: FrameMaker and
vanilla HTML output (customized in-house tools)

If faced with a task this size and complex, testing the outputs is
essential before beginning. Once the output files are tested, and
the compromises decided upon, indexing can begin.

It’s best when faced with this much complexity to index outside
the files – Excel, with its flexible columns and color coding
allows the indexer to be able to sort and check each product’s
standalone indexing for problems, and sort and check each
product’s indexing against the whole series before inserting final
entries into the files. The index spreadsheet tracks the filename,
topic name, product, entry text, location, and special notes. (See
Table 1) As yearly revisions are worked on, old indexing already
known to be tried and true can be reused – updated with new
filenames and topic numbers as needed and incorporated.

Only certain columns are be stripped out and used from this
spreadsheet. Macros can be built in-house to place entries
automatically at the beginnings of the topics according to the
recorded topic IDs. Macros can also used to generate the list of
topic IDs to be indexed, minimizing typing mistakes. All of the
customized macro sets need to be tested with sample entries so
that the outputs could be predicted before indexing begins.

Conditional text single-sourcing leads to compromises. When
portions of content and entries are removed, you can get index
entries that do not make sense alone. Or if portions of content and
index entries are added, you can get stubhead entries that really
needed a subhead to make them findable. The budget will dictate
how much compromise can be tolerated. Designing the index for
the online portion makes the most sense in these cases, as it is
usually far less flexible than the print index and cannot
accommodate the niceties of print.

DHTML adds more flavor – if the text is not going to be visible
on first glance to the user, should it be indexed? It may appear on
the page in print, and so should be indexed, but if it is buried
under a drop-down or pop-up listing, it most likely should not be
indexed. Again, the print portion loses in this compromise.

2.6 XML Indexes and
Custom Index Interfaces
With the entry of XML into the documentation world, and
associated content management systems, the development of
single-sourced indexes could become much easier. XML content
databases may be able to get around the restrictions of off-the-
shelf software packages. As more and more groups use these
tools, and as they become more affordable, we may see better
single-sourced indexes. But that time is not here yet. And when it
arrives, the index interfaces generated by the tools still need to be
tested to be sure that records are entered in the most usable and
retrievable manner.

The hardest work will be the upfront design of the indexing
portions of the DTD, and determining if one set of entries can be
manipulated for each output style. There is the potential for two or
three sets of index entries (one for each output style) to be
included for chunks of contents, if that turns out to be the best
method. One of the biggest benefits, however, will be allowing
the index content to remain free of external coding requirements.

Analysis of the output interfaces must be done before developing
the DTD sections or adding entries to the content. In many cases,
the output will be going into a customized index interface, and if
it is possible to have an indexer involved with the design of the
interface for that output, all the better.

When working with customized index interfaces, make use of
Figure 1, which displayed all the kinds of index components that

can be used in technical indexing. Usability features that could be
incorporated into a customized interface are:

 Type Ahead Capability

 Interactive Cross References

 Topics Found Mechanism

 Stay on Top Functionality

 Search (within the index to bring up entries with plural
endings, gerund endings, or related terms if the term
doesn’t exist)

If dealing with a customized index interface that is set in stone
and cannot be changed, devise a testing plan to make sure all the
files will work when run through the compilation.

3. TESTING PLANS
Such a variety of different tool sets are being used to single-
source documentation that no one tool set recommendation can be
made. As pointed out earlier, the budget and needs of the rest of
the documentation set dictate the tool choices, and the index must
find a means of coping with the choices.

Doing preliminary test runs of documents with sample indexing
through the entire tool set should allow the indexer to predict
what will happen in each interface before adding entries to the
real content. A sample index incorporating all wanted elements
should be developed. For ideas and needed elements, use the
entries from Figure 1, as it contains most elements present in
complete technical indexes. Then eliminate what does not work,
and create a set of style suggestions to make the index work in all
the necessary formats.

Any specialized macros built to assist in the project will need to
be set up early on so that special needs for punctuation (dividers
between entries, or separators between main heads and subheads)
can be tested at the same time.

4. CONCLUSION
As these examples have shown, designing indexes that work
equally well in any of the various interfaces in which a document
may be displayed, whether print, help, PDF, or on the Web,
presents challenges. Testing the tools for problems before starting
to index is the only way to ensure a usable index in all formats.
Once testing is done, a basic style sheet can be employed by all
involved in the indexing effort to keep entries consistent and
workable throughout the conversions.

5. ISSUES CHECKLIST
Below is a short list of problems to check for in the design process
and conversion tests.

Product Filename Print or
Online

Topic ID Entry Notes

Basic 4.0 Intro both Saving_your_files saving:files

Basic 4.0 Intro both Saving_your_files files:saving

Basic 4.0 Intro Online Saving_your_files web pages:saving as Leads to menu
of choices

Professional 4.0 Newfeature both What_s_new Professional:new
features

Table 1: Conditional Text Indexing Spreadsheet

Structure:

 Levels available – one, two, three?

 One-to-one or one-to-many interface (multiple locators)

 “Topics Found” mechanism present?

 Multiple entry sets available (XML)?

 Pop-up pages available?

Cross references:

 Target names match perfectly or not?

 Sorting issues

 Interactivity

 Limited to one reference or multiple?

 Generic references available

Punctuation:

 Separator punctuation within entries

 Divider punctuation between lists of entries

 Internal punctuation within entries

Formatting

 Character formats such as italics, bold, or small caps
available?

 Display of special characters

 Plural entries

Sorting

 Sorting of prepositions and lead stop words

 Sorting of special characters

Stubheads

 Active or passive stubheads

 Double posting under stubheads

Other issues:

 Internal numbering systems in PDF display

 Conditional text handling

 Lost online entries from print page ranges

 Long strings of locators in print index

6. ACKNOWLEDGMENTS
My thanks to Microsoft Corporation and the former Visio
Corporation for providing indexers with single-sourcing projects
in nearly every index format imaginable. My thanks also to
Caroline Parks for sharing the challenges of single-sourcing
indexing through many projects and tools, and for her comments
on this article.

	INTRODUCTION
	Identifying Index Elements
	Embedded Entries in Files

	IDENTIFYING �INDEX INTERFACE ISSUES
	Print indexes
	PDF indexes
	WinHelp and HTML Help indexes
	HTML indexes
	Conditional Text Single-Sourcing
	XML Indexes and �Custom Index Interfaces

	TESTING PLANS
	CONCLUSION
	ISSUES CHECKLIST
	ACKNOWLEDGMENTS

